Live imaging of the genetically intractable obligate intracellular bacteria Orientia tsutsugamushi using a panel of fluorescent dyes

نویسندگان

  • Sharanjeet Atwal
  • Suparat Giengkam
  • Michael VanNieuwenhze
  • Jeanne Salje
چکیده

Our understanding of the molecular mechanisms of bacterial infection and pathogenesis are disproportionally derived from a small number of well-characterised species and strains. One reason for this is the enormous time and resources required to develop a new organism into experimental system that can be interrogated at the molecular level, in particular with regards to the development of genetic tools. Live cell imaging by fluorescence microscopy is a powerful technique to study biological processes such as bacterial motility, host cell invasion, and bacterial growth and division. In the absence of genetic tools that enable exogenous expression of fluorescent proteins, fluorescent chemical probes can be used to label and track living cells. A large number of fluorescent chemical probes are commercially available, but these have overwhelmingly been applied to the study of eukaryotic cell systems. Here, we present a methodical analysis of four different classes of probes, which can be used to delineate the cytoplasm, nucleic acids, cell membrane or peptidoglycan of living bacterial cells. We have tested these in the context of the important but neglected human pathogen Orientia tsutsugamushi but expect that the methodology would be broadly applicable to other bacterial species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule- and dynein-mediated movement of Orientia tsutsugamushi to the microtubule organizing center.

The host cell microfilaments and microtubules (MTs) are known to play a critical role in the life cycles of several pathogenic intracellular microbes by providing for successful invasion and promoting movement of the pathogen once inside the host cell cytoplasm. Orientia tsutsugamushi, an obligate intracellular bacterium, enters host cells by induced phagocytosis, escapes to the cytosol, and th...

متن کامل

Intracellular Invasion of Orientia tsutsugamushi Activates Inflammasome in ASC-Dependent Manner

Orientia tsutsugamushi, a causative agent of scrub typhus, is an obligate intracellular bacterium, which escapes from the endo/phagosome and replicates in the host cytoplasm. O. tsutsugamushi infection induces production of pro-inflammatory mediators including interleukin-1β (IL-1β), which is secreted mainly from macrophages upon cytosolic stimuli by activating cysteine protease caspase-1 withi...

متن کامل

Active escape of Orientia tsutsugamushi from cellular autophagy.

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. After entry into host cells, the bacterium rapidly escapes from the endosomal pathway and replicates in the cytosol of eukaryotic host cells. Here we show that O. tsutsugamushi infection efficiently promotes cellular autophagy, a cell-autonomous defense mechanism of innate immunity. However, most...

متن کامل

Improved Quantification, Propagation, Purification and Storage of the Obligate Intracellular Human Pathogen Orientia tsutsugamushi

BACKGROUND Scrub typhus is a leading cause of serious febrile illness in rural Southeast Asia. The causative agent, Orientia tsutsugamushi, is an obligate intracellular bacterium that is transmitted to humans by the bite of a Leptotrombidium mite. Research into the basic mechanisms of cell biology and pathogenicity of O. tsutsugamushi has lagged behind that of other important human pathogens. O...

متن کامل

Peptidoglycan in obligate intracellular bacteria

Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2016